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X-ray detectors:

X-ray photons go in, electrons come out
Types of detectors, based on media used in conversion:

1. Gas detectors

2. Scintillators

3. Semiconductor detectors

4. Superconducting elements (tunneling junctions)
5. Photoemulsion

Detectors: X-ray Film, Geiger counter, Phosphor screen,
Scintillators, wire 1D (linear) and 2D PSD, CCD, CMOS,
avalanche photodiode, ionization chamber, etc.



Detectors:

Parameters important for detectors:

1. Efficiency

2. Spatial resolution (per element)

3. Solid angle acceptance (number of elements)
4. Dynamic range, dark noise

5. Readout Speed / Dead time

6. Energy resolution/discrimination

7. Distortions - spatial, uniformity of response,
resistance to radiation damage, stability

8. Size, weight and cost



Gas Ionization Chambers
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Auger and Photoelectric effect
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(a) Flow Gas Ion chamber and (b) sealed Gas Ion chamber
Gas used: He, Ne, Kr, He, Xe. Windows: mica, mylar, kapton etc.



Gas detectors
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Scintillation Counters
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Layout of Scintillation Counter
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Position Sensitive detector
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Idea: Proportional Counter (Ion Chamber) with high resistivity
anode - to slow down electron pulses

Measure d1 and d2 based on how quickly the signal travels along
the anode wire ("rise time").



Solid State Detectors: Si, Ge
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Pulse height analysis and

discrimination
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Pulse amplitude (related to x-ray energy)
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FWHM is 130-150 eV for Si detectors, 900 eV for gas detectors,

~3500 eV for scintillators



Energy discrimination

Low-energy contributions - primarily
fluorescence (inner shell electronic
excitations) - can be eliminated by
adsorbers, pulse height discrimination

High-energy contributions - higher
harmonics - can easily survive adsorbers.
Not a problem for grazing incidence
measurements.

Can be eliminated by pulse height
discrimination.



"Dead time" corrections

For a short time t4 after a pulse the detector is
“dead"” (unable to detect any new pulses). All pulses
coming within dead time of each other will register
as a single pulse.

Typical values of 14 are 1-2 us for scintillators, 0.2
us for proportional counters.
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Relationship between real and measured count rates
(N.and N,.), and dead time t,.
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Typical dataset for Oxford Cyberstar X1000 Scintillator detector
(from T. Gog et al. CMC NewsBlip 01-02-01).

Max attainable count rate ~400,000 cps. Above 350,000 is no longer
described by deadtime formula



CCD Readout
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Charge Couple Device (CCD)
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Data collection

Problem: intensity variations
by 108-109in reflectivity measurements
by 103-10° in GIDX, diffuse scattering

Solution: use attenuators for high intensity beams,
then "stitch” the data together

Attenuator - set of mounted films on a motorized
linear translator

If 1 film attenuates by a factor of 2, 2 films
attenuate by 4, 3 films by 8, etc. Actual attenuation
per film depends on energy, material, thickness.

Use "binary” attenuator system.



Stitch together overlapping regions
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Multiple overlap points strongly recommended!
Change overlap regions for consistency



Data collection

Problem: How to separate bulk contribution from
surface scattering

Solution: Since bulk scattering is isotropic, subtract
signal in of f-specular geometry
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Background subtraction:
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Check lineshape for
a few locations
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measurement (saves time)



Data collection

Problem: reproducibility of data
Solution: repeated measurements
+ repeat everything "backwards”

Why?
backlash effect
beam damage
sample history etc.
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Soler Slits

resolution ~ 0.1 degree

Soller slit

Specimen



Grazing Incidence Diffraction w/ Soller Slits
(penetration depth ~1.4nm, 5 atomic layers)
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O.6. Shpyrko et al., Science 313, 77 (2006)



(23) and (31) peaks cannot be resolved with

soller slits (previous slide) but can be resolved
with crystal analyzer
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Intensity (counts/sec)

264 265 266 267 268 269 2.7 2.71

O.6. Shpyrko et al., Phys. Rev. B (to appear) 2007



Double-bounce monochromator
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Contrast mechanisms of chemical species:
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Figure 1. A comparison of x-ray and neutron scattering cross sections for an 48 Q 56 60 )
identical set of elements and their more common isotopes. The size of each
circle is a measure of the relative cross section, and mass numbers identify the

! : . : ! 62|
ditferent isotopes, with the top row representing an isotopically average value, 50 J 5T 0

The systematic variation in the x-ray scattering cross sections occurs because

x rays scatter from electrons, the number of which increases monotonically
across the periodic table. Neutrons scatter from nuclei. Thus, the cross section varies in a way that depends on the nuclear

structure. Some isotopes, including the ones colored blue here, exhibit negative scattering length.
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Thomas E. Mason, Physics Today 59, 44-49 (2006)



Other contrast mechanisms: absorption edges
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Basic idea: when ftuned to resonant edge of an element, the element “loses” a few
electrons. Near K-edge Ar effective electron density varies from Z+f' of 18 to 11.

Energy changes near adsorption edge serve as "tuning knob" to vary contrast
between various species



Example: Gibbs Adsorption in liquid BiSn

Tuning Knob:
X-ray Energy Resonance
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O.6. Shpyrko et al., Phys. Rev. Lett. 95, 106103 (2005)



BiSn: Miscible (eutectic) Binary alloy
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O.G. Shpyrko et al., Phys. Rev. Lett. 95, 106103 (2005)



Think about other contrast mechanisms, new
(and old) techniques

Standing Wave

Surface Extended Edge Adsorption (SEXAFS)
Fluorescence (e.g. in grazing incidence)

X-ray Microscopy, Phase Contrast Imaging

Use of X-ray coherence - dynamics with X-ray
Photon Correlation Spectroscopy (XPCS)

New detectors, new approaches in data analysis
(model-independent density profiles)

Anything possible in visible light optics is
probably doable with x-rays!



Other useful tricks and tips
for aspiring young x-ray ninjas

AA] = he _ 12.398 Note that 12.398 is almost 47

E E [keV] 2k in A-1= Energy in keV

To convert from degrees to radians divide by 60.
sin(x)=x for small x<<1

Example: Energy is 6.5 keV, a=p=6 deg.
What is q, ?
q,=2k sin(a)=6.5/10=0.65 A-!

Learning geometry of scattering (hames of motors, angles, distances)
will help you do quick "back of the envelope” calculations

Example: How far o move detector in g, to avoid specular reflection
(for background subtraction?)

Back of the envelope: 4mm horizontal slits, 630mm from the sample
26 ~ 1/300 or 3mrad (need to move only half of the width)
q.=k sin(26)=6.5 /300/2=0.01 A-! (approx.)



First Synchrotron Light: First Computer:
General Electric, 1947 ENIAC, 1943
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Further reading material

General information on detectors:
Handbook on Synchrotron Radiation
(ed. D. E. Eastman and Y. Farge)

X-ray Position sensitive detectors:
U. Arndt J. Appl. Cryst. 19, 145-163 (1986)
A. Gabriel, Rev. Sci. Inst. 48, 1303 (1977)

CCD:
S. M. Gruner et al., Rev. Sci. Inst. 73, 2815 (2002)

Synchrotron Radiation:
H. Winick et al., Ann. Rev. Nucl. Part. Sci..28, 33 (1978)



